Правила та формули диференціювання похідна складної функції. Похідна складної функції

Авто та мото

Функції складного виглядуне дуже коректно називати терміном «складна функція». Наприклад, виглядає дуже переконливо, але складною ця функція не є, на відміну від .

У цій статті ми розберемося з поняттям складної функції, навчимося виявляти її у складі елементарних функцій, дамо формулу знаходження її похідної та докладно розглянемо рішення характерних прикладів.

При вирішенні прикладів постійно використовуватимемо таблицю похідних і правила диференціювання, так що тримайте їх перед очима.


Складна функція- Це функція, аргументом якої також є функція.

На наш погляд, це визначення найбільш зрозуміле. Умовно можна позначати як f(g(x)). Тобто, g(x) як аргумент функції f(g(x)) .

Наприклад, нехай f – функція арктангенса, а g(x) = lnx є функція натурального логарифму, тоді складна функція f(g(x)) є arctg(lnx). Ще приклад: f - функція зведення в четвертий ступінь, а - ціла раціональна функція (дивіться ), тоді .

У свою чергу, g(x) може бути складною функцією. Наприклад, . Умовно такий вираз можна позначити як . Тут f - функція синуса, - функція вилучення квадратного кореня, - Дробова раціональна функція. Логічно припустити, що ступінь вкладеності функцій може бути будь-яким кінцевим натуральним числом.

Часто можна чути, що складну функцію називають композицією функцій.

Формула знаходження похідної складної функції.

приклад.

Знайти похідну складної функції.

Рішення.

У цьому прикладі f – функція зведення квадрат, а g(x) = 2x+1 – лінійна функція.

Ось докладне рішення з використанням формули похідної складної функції:

Давайте знайдемо цю похідну, попередньо спростивши вигляд вихідної функції.

Отже,

Як бачите, результати збігаються.

Намагайтеся не плутати, яка функція є f , а яка g(x) .

Пояснимо це прикладом на уважність.


приклад.

Знайти похідні складних функцій та .

Рішення.

У першому випадку f – це функція зведення квадрат, а g(x) – функція синуса, тому
.

У другому випадку f - це функція синуса, а - статечна функція. Отже, за формулою добутку складної функції маємо

Формула похідної функції має вигляд

приклад.

Продиференціювати функцію .

Рішення.

У цьому прикладі складну функцію можна умовно записати як , де - функція синуса, функція зведення в третій ступінь, функція логарифмування на підставі e, функція взяття арктангенса та лінійна функція відповідно.

За формулою похідної складної функції

Тепер знаходимо

Збираємо воєдино отримані проміжні результати:

Страшного нічого немає, розбирайте складні функції як матрьошки.

На цьому можна було б закінчити статтю, якби жодне але…

Бажано чітко розуміти, коли застосовувати правила диференціювання та таблицю похідних, а коли формулу похідної складної функції.

ЗАРАЗ БУДЬТЕ ОСОБЛИВО УВАЖНІ. Ми поговоримо про відмінність функцій від складних функцій. Від того, наскільки Ви бачите цю відмінність, і буде залежати успіх при знаходженні похідних.

Почнемо із простих прикладів. функцію можна розглядати як складну: g(x) = tgx , . Отже, можна відразу застосовувати формулу похідної складної функції

А ось функцію складною вже назвати не можна.

Ця функція є сумою трьох функцій , 3tgx і 1 . Хоча - є складною функцією: - статечна функція (квадратична парабола), а f - функція тангенса. Тому спочатку застосовуємо формулу диференціювання суми:

Залишилося знайти похідну складної функції:

Тому.

Сподіваємося, що суть Ви вловили.

Якщо дивитися ширше, можна стверджувати, що функції складного виду можуть входити до складу складних функцій і складні функції можуть бути складовими частинами функцій складного виду.

Як приклад розберемо за складовими частинами функцію .

По першеце складна функція, яку можна представити у вигляді , де f - функція логарифмування на підставі 3 , а g(x) є сума двох функцій і . Тобто, .

По-друге, Займемося функцією h (x). Вона є відношенням до .

Це сума двох функцій та , де - Складна функція з числовим коефіцієнтом 3 . - функція зведення в куб; - функція косинуса; - лінійна функція.

Це сума двох функцій і , де - складна функція, - функція експоненцювання, - статечна функція.

Таким чином, .

По-третє, переходимо до , яка є твір складної функції та цілої раціональної функції

Функція зведення в квадрат, - функція логарифмування на підставі e.

Отже, .

Підсумуємо:

p align="justify"> Тепер структура функції зрозуміла і стало видно, які формули і в якій послідовності застосовувати при її диференціюванні.

У розділі диференціювання функції (знаходження похідної) Ви можете ознайомитись із вирішенням подібних завдань.

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки чи на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, сама зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок:

1) Беремо похідну від квадратного кореня.

2) Беремо похідну від різниці, використовуючи правило

3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

4) Беремо похідну від косинуса.

6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» - логарифм: . Чому можна так зробити? А хіба - це не твір двох множників і правило не працює? Нічого складного немає:


Тепер залишилося вдруге застосувати правило до дужки:

Можна ще зневіритися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь?

Наведемо вираз чисельника до спільного знаменника і позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Операція відшукання похідної називається диференціюванням.

У результаті розв'язання задач про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення збільшення до збільшення аргументу з'явилися таблиця похідних і точно визначені правила диференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функцій знаходимо у таблиці похідних, а формули похідних твору, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинусу
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна робота двох функцій дорівнює сумі творів кожної з цих функцій на похідну іншої.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твори і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладів на ці похідні - у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У випадку доданку її похідна дорівнює нулю, а у разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапі вивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студентцю помилку вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка- механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів та отримуємо необхідну умовою завдання похідну всієї функції:

А перевірити розв'язання задачі на похідну можна на .

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, у яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричних функцій, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значення похідної квадратного кореня отримуємо:

Перевірити рішення задачі на похідну можна на калькуляторі похідних онлайн .

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили та застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .

Функції складного вигляду який завжди підходять під визначення складної функції. Якщо є функція виду y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, то її не можна вважати складною на відміну від y = sin 2 x.

Ця стаття покаже поняття складної функції та її виявлення. Попрацюємо з формулами знаходження похідної із прикладами рішень у висновку. Застосування таблиці похідних та правила диференціювання помітно зменшують час для знаходження похідної.

Основні визначення

Визначення 1

Складною функцією вважається така функція, яка аргумент також є функцією.

Позначається це так: f (g (x)) . Маємо, що функція g(x) вважається аргументом f(g(x)).

Визначення 2

Якщо є функція f і є функцією котангенсу, тоді g(x) = ln x – це функція натурального логарифму. Отримуємо, що складна функція f(g(x)) запишеться як arctg(lnx). Або функція f , що є функцією зведеної в 4 ступінь, де g (x) = x 2 + 2 x - 3 вважається цілою раціональною функцією, отримуємо, що f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, що g(x) може бути складною. З прикладу y = sin 2 x + 1 x 3 – 5 видно, що значення g має кубічний коріньз дробом. Даний вираз можна позначати як y = f (f 1 (f 2 (x))) . Звідки маємо, що f – це функція синуса, а f 1 – функція, що розташовується під квадратним коренем, f 2 (x) = 2 x + 1 x 3 – 5 – дробова раціональна функція.

Визначення 3

Ступінь вкладеності визначено будь-яким натуральним числом і записується як y = f (f 1 (f 2 (f 3 (. . . (f n (x))))))))).

Визначення 4

Поняття композиція функції належить до кількості вкладених функцій за умовою завдання. Для вирішення використовується формула знаходження похідної складної функції виду

(f(g(x))) "=f"(g(x)) · g"(x)

Приклади

Приклад 1

Знайти похідну складної функції виду y = (2 x + 1) 2 .

Рішення

За умовою видно, що f є функцією зведення квадрат, а g (x) = 2 x + 1 вважається лінійною функцією.

Застосуємо формулу похідної для складної функції та запишемо:

f "(g (x)) = ((g (x)) 2)" = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 ​​x + 1); g "(x) = (2 x + 1)" = (2 x) "+ 1" = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) " = f "(g (x)) · g "(x) = 2 · (2 ​​x + 1) · 2 = 8 x + 4

Необхідно знайти похідну зі спрощеним вихідним виглядом функції. Отримуємо:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Звідси маємо, що

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результати збіглися.

При вирішенні завдань такого виду важливо розуміти, де розташовуватиметься функція виду f і g (x) .

Приклад 2

Слід знайти похідні складних функцій виду y = sin 2 x та y = sin x 2 .

Рішення

Перший запис функції свідчить, що f є функцією зведення квадрат, а g (x) – функцією синуса. Тоді отримаємо, що

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Другий запис показує, що f є функцією синуса, а g(x) = x 2 позначаємо статечну функцію. Звідси випливає, що добуток складної функції запишемо як

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для похідної y = f (f 1 (f 2 (f 3 (. . . (fn (x)))))))) запишеться як y " = f " (f 1 (f 2 (f 3 (. . .) fn (x)))))) · f 1 " (f 2 (f 3 (. . . (fn (x)))))) · · f 2 " (f 3 (. . . (fn (x))) )) · . . . · f n "(x)

Приклад 3

Знайти похідну функції y = sin (ln 3 a r c t g (2 x)).

Рішення

Даний приклад показує складність запису та визначення розташування функцій. Тоді y = f (f 1 (f 2 (f 3 (f 4 (x)))))) позначимо, де f , f 1 , f 2 , f 3 , f 4 (x) є функцією синуса, функцією зведення в 3 ступінь, функцією з логарифмом та основою е, функцією арктангенсу та лінійною.

З формули визначення складної функції маємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x)

Отримуємо, що слід знайти

  1. f" (f 1 (f 2 (f 3 (f 4 (x))))) як похідна синуса по таблиці похідних, тоді f " (f 1 (f 2 (f 3 (f 4 (x))))) ) = cos (ln 3 arctg (2 x)).
  2. f 1 "(f 2 (f 3 (f 4 (x)))) як похідну статечну функцію, тоді f 1 "(f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 arctg (2 x) = 3 · ln 2 arctg (2 x) .
  3. f 2 "(f 3 (f 4 (x))) як похідна логарифмічна, тоді f 2 "(f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 "(f 4 (x)) як похідний арктангенса, тоді f 3 "(f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При знаходженні похідної f 4 (x) = 2 x зробити винесення 2 за знак похідної із застосуванням формули похідної статечної функції з показником, що дорівнює 1 тоді f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Проводимо об'єднання проміжних результатів та отримуємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x) = = cos (ln 3 arctg (2 x)) · 3 · ln 2 arctg (2 x) · 1 arctg (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 arctg (2 x)) · ln 2 arctg (2 x) arctg (2 x) · (1 + 4 x 2)

Розбір таких функцій нагадує матрьошки. Правила диференціювання не завжди можуть бути застосовані в явному виглядіза допомогою таблиці похідних. Найчастіше потрібно застосовувати формулу знаходження похідних складних функцій.

Існують деякі відмінності складного виду складних функцій. При явному вмінні це розрізняти, знаходження похідних даватиме особливо легко.

Приклад 4

Необхідно розглянути на наведенні такого прикладу. Якщо є функція виду y = t g 2 x + 3 t g x + 1, тоді її можна розглянути як складний вид g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, що необхідне застосування формули для складної похідної:

f "(g (x)) = (g 2 (x) + 3 g (x) + 1)" = (g 2 (x)) "+ (3 g (x))" + 1 " = = 2 · g 2 - 1 (x) + 3 · g "(x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 tgx + 3; g " (x) = (tgx) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) · g " (x) = (2 tgx + 3 ) · 1 cos 2 x = 2 tgx + 3 cos 2 x

Функція виду y = t g x 2 + 3 t g x + 1 не вважається складною, оскільки має суму t g x 2 3 t g x і 1 . Однак, t g x 2 вважається складною функцією, то отримуємо статечну функцію виду g (x) = x 2 і f є функцією тангенса. Для цього слід продиференціювати за сумою. Отримуємо, що

y " = (tgx 2 + 3 tgx + 1) " = (tgx 2) " + (3 tgx) " + 1 " = = (tgx 2) " + 3 · (tgx) " + 0 = (tgx 2) " + 3 cos 2 x

Переходимо до знаходження похідної складної функції (t g x 2) " :

f "(g (x)) = (tg (g (x)))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g "(x) = (x 2)" = 2 · x 2 - 1 = 2 x ⇒ (tgx 2) "= f "(g (x)) · g "(x) = 2 x cos 2 (x 2)

Отримуємо, що y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функції складного виду можуть бути включені до складу складних функцій, причому самі складні функції можуть бути складовими складного функції.

Приклад 5

Наприклад розглянемо складну функцію виду y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Ця функція може бути представлена ​​у вигляді y = f (g (x)) , де значення f є функцією логарифму на підставі 3 , а g (x) вважається сумою двох функцій виду h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 ex 2 + 3 3 і k(x) = ln 2 x · (x 2 + 1) . Очевидно, що y = f(h(x) + k(x)) .

Розглянемо функцію h(x) . Це відношення l(x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Маємо, що l(x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n(x) + p(x) є сумою двох функцій n(x) = x 2 + 7 та p(x) = 3 cos 3 (2 x + 1) , де p (x) = 3 · p 1 (p 2 (p 3 (x))) є складною функцією з числовим коефіцієнтом 3 а p 1 - функцією зведення в куб, p 2 функцією косинуса, p 3 (x) = 2 x + 1 – лінійною функцією.

Отримали, що m (x) = ex 2 + 3 3 = q (x) + r (x) є сумою двох функцій q (x) = ex 2 і r (x) = 3 3 де q (x) = q 1 (q 2 (x)) – складна функція, q 1 – функція з експонентою, q 2 (x) = x 2 – статечна функція.

Звідси видно, що h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

При переході до виразу виду k(x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, що функція представлена ​​у вигляді складної s(x) = ln 2 x = s 1 ( s 2 (x)) з цілою раціональною t (x) = x 2 + 1 , де s 1 є функцією зведення в квадрат, а s 2 (x) = ln x - логарифмічної з основою е.

Звідси випливає, що вираз набуде вигляду k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тоді отримаємо, що

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 ex 2 + 3 3 + ln 2 x · (x 2 + 1) = = fn (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

За структурами функції стало явно, як і які формули необхідно застосовувати для спрощення вираження за його диференціювання. Для ознайомлення подібних завдань і для поняття їх вирішення необхідно звернутися до пункту диференціювання функції, тобто знаходження її похідної.

Якщо Ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

І теорему про похідну складну функцію, формулювання якої така:

Нехай 1) функція $u=\varphi (x)$ має у певній точці $x_0$ похідну $u_(x)"=\varphi"(x_0)$; 2) функція $y=f(u)$ має у відповідній точці $u_0=\varphi (x_0)$ похідну $y_(u)"=f"(u)$. Тоді складна функція $y=f\left(\varphi (x) \right)$ у згаданій точці також матиме похідну, рівну добутку похідних функцій $f(u)$ і $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

або, у більш короткому записі: $y_(x)"=y_(u)"\cdot u_(x)"$.

У прикладах цього розділу всі функції мають вигляд $y=f(x)$ (тобто розглядаємо лише функції однієї змінної $x$). Відповідно, у всіх прикладах похідна $y"$ береться за змінною $x$. Щоб підкреслити те, що похідна береться за змінною $x$, часто замість $y"$ пишуть $y"_x$.

У прикладах №1, №2 та №3 викладено докладний процес знаходження похідної складних функцій. Приклад №4 призначений більш повного розуміння таблиці похідних і має сенс ознайомитися.

Бажано після вивчення матеріалу у прикладах №1-3 перейти до самостійного рішення прикладів №5, №6 та №7. Приклади №5, №6 та №7 містять коротке рішення, щоб читач міг перевірити правильність свого результату.

Приклад №1

Знайти похідну функції $y=e^(\cos x)$.

Нам потрібно знайти похідну складної функції $y"$. Оскільки $y=e^(\cos x)$, то $y"=\left(e^(\cos x)\right)"$. Щоб знайти похідну $ \left(e^(\cos x)\right)"$ використовуємо формулу №6 з таблиці похідних . Щоб використати формулу №6, потрібно врахувати, що в нашому випадку $u=\cos x$. Подальше рішення полягає у банальній підстановці у формулу №6 виразу $\cos x$ замість $u$:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Тепер потрібно знайти значення виразу $(\cos x)"$. Знову звертаємось до таблиці похідних, вибираючи з неї формулу №10. Підставляючи $u=x$ у формулу №10, маємо: $(\cos x)"=-\ sin x\cdot x"$. Тепер продовжимо рівність (1.1), доповнивши його знайденим результатом:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Оскільки $x"=1$, то продовжимо рівність (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Отже, з рівності (1.3) маємо: $y"=-\sin x\cdot e^(\cos x)$. Природно, що пояснення та проміжні рівності зазвичай пропускають, записуючи перебування похідної в один рядок, - як у рівності ( 1.3) Отже, похідна складної функції знайдена, залишилося лише записати відповідь.

Відповідь: $y"=-\sin x\cdot e^(\cos x)$.

Приклад №2

Знайти похідну функції $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Нам необхідно обчислити похідну $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Спочатку відзначимо, що константу (тобто число 9) можна винести за знак похідної:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Тепер звернемося до виразу $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Щоб вибрати потрібну формулу з таблиці похідних було легше, я представлю вираз, що розглядається в такому вигляді: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Тепер видно, що потрібно використовувати формулу №2, тобто. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. У цю формулу підставимо $u=\arctg(4\cdot \ln x)$ і $\alpha=12$:

Доповнюючи рівність (2.1) отриманим результатом, маємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

У цій ситуації часто допускається помилка, коли вирішувач на першому кроці вибирає формулу $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ замість формули $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Справа в тому, що першою повинна бути похідна зовнішньої функції. Щоб зрозуміти, яка саме функція буде зовнішньою для вираження $\arctg^(12)(4\cdot 5^x)$, уявіть, що ви вважаєте значення виразу $\arctg^(12)(4\cdot 5^x)$ за якогось значення $x$. Спочатку ви порахуєте значення $5^x$, потім помножите результат на 4, отримавши $4\cdot 5^x$. Тепер від цього результату беремо арктангенс, отримавши $arctg(4cdot 5^x)$. Потім зводимо отримане число в дванадцяту ступінь, отримуючи $ arctg (12) (4 cdot 5 x) $. Остання дія, - тобто. зведення в ступінь 12 - і буде зовнішньою функцією. І саме з неї слід починати перебування похідної, що було зроблено рівності (2.2).

Тепер потрібно знайти $(\arctg(4\cdot \ln x))"$. Використовуємо формулу №19 таблиці похідних, підставивши в неї $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Трохи спростимо отриманий вираз, враховуючи $(4\cdot \nn x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Рівність (2.2) тепер стане такою:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Залишилося знайти $(4\cdot \ln x)"$. Винесемо константу (тобто 4) за знак похідної: $(4\cdot \ln x)"=4\cdot (\ln x)"$. того, щоб знайти $(\ln x)"$ використовуємо формулу №8, підставивши в неї $u=x$: $(\ln x)"=\frac(1)(x)\cdot x"$. Оскільки $x"=1$, то $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x )$.Підставивши отриманий результат у формулу (2.3), отримаємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)). $

Нагадаю, що похідна складної функції найчастіше знаходиться в один рядок - як записано в останній рівності. Тому при оформленні типових розрахунків або контрольних робіт зовсім не обов'язково розписувати рішення так само детально.

Відповідь: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Приклад №3

Знайти $y"$ функції $y=\sqrt(\sin^3(5\cdot9^x))$.

Для початку трохи змінимо функцію $y$, висловивши радикал (корінь) у вигляді ступеня: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9^x) \right)^(\frac(3)(7))$. Тепер приступимо до знаходження похідної. Оскільки $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Використовуємо формулу №2 з таблиці похідних, підставивши в неї $u=\sin(5\cdot 9^x)$ і $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Продовжимо рівність (3.1), використовуючи отриманий результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Тепер потрібно знайти $(\sin(5\cdot 9^x))"$. Використовуємо для цього формулу №9 з таблиці похідних, підставивши в неї $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Доповнивши рівність (3.2) отриманим результатом, маємо:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Залишилося знайти $(5\cdot 9^x)"$. Для початку винесемо константу (число $5$) за знак похідної, тобто $(5\cdot 9^x)"=5\cdot (9^x) "$. Для знаходження похідної $(9^x)"$ застосуємо формулу №5 таблиці похідних, підставивши до неї $a=9$ і $u=x$: $(9^x)"=9^x\cdot \ ln9\cdot x"$. Оскільки $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Тепер можна продовжити рівність (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можна знову від ступенів повернутися до радикалів (тобто коріння), записавши $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ у вигляді $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Тоді похідна буде записана у такій формі:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).$$

Відповідь: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Приклад №4

Показати, що формули №3 і №4 таблиці похідних є окремий випадок формули №2 цієї таблиці.

У формулі №2 таблиці похідних записано похідну функцію $u^\alpha$. Підставляючи $\alpha=-1$ у формулу №2, отримаємо:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Оскільки $u^(-1)=\frac(1)(u)$ і $u^(-2)=\frac(1)(u^2)$, то рівність (4.1) можна переписати так: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Це і є формула №3 таблиці похідних.

Знову звернемося до формули №2 таблиці похідних. Підставимо до неї $\alpha=\frac(1)(2)$:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Оскільки $u^(\frac(1)(2))=\sqrt(u)$ і $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1)(2)))=\frac(1)(\sqrt(u))$, то рівність (4.2) можна переписати в такому вигляді:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Отримана рівність $(sqrt(u))"=\frac(1)(2sqrt(u))cdot u"$ і є формула №4 таблиці похідних. Як бачите, формули №3 та №4 таблиці похідних виходять з формули №2 підстановкою відповідного значення $ alfa $.